Position control of BLDC Motor Using Proportional Integral Sliding Mode (PISMC) Control with LabVIEW Real-Time, Simulation & Experiment

> Bondhan Novandy http://bono02.wordpress.com/

Introduction

- SMC is one of the robust controller with ability to compensate the uncertain parameters, incomplete dynamics model and reject disturbances.
- The additional of PI on the SMC give several "extra" freedoms and flexibility in tuning and obtaining the desired performance.

Design Scheme

- First, select a PI sliding surface.
- Second, from the sliding surface we derive the equivalent control
- Third, the control output is achieved by adding the switching control output.

The mathematics derivation is straight forward, and will be explained in next page.

Mathematical Derivation

 Since one advantage of SMC is the ability to compensate the incomplete dynamic model, we use a simple common motor dynamics:

$$J\ddot{\theta} + B\dot{\theta} = T_m + T_d$$

 Where J is motor inertia, B is damping, Tm is motor torque, Td is disturbance (is zero), Theta double dot is acceleration and Theta dot is velocity.

Sliding Surface

• A PI sliding surface

$$S = Kp\tilde{\theta} + Ki\int_{0}^{t}\tilde{\theta}dt + \dot{\tilde{\theta}}, where \ \tilde{\theta} = \theta_{m} - \theta_{d}$$

• The derivation of sliding surface

$$\dot{S} = Kp\dot{\tilde{\theta}} + Ki\,\tilde{\theta} + \ddot{\tilde{\theta}}$$
$$= Kp\left(\dot{\theta}_m - \dot{\theta}_d\right) + Ki\left(\theta_m - \theta_d\right) + \left(\ddot{\theta}_m - \ddot{\theta}_d\right)$$

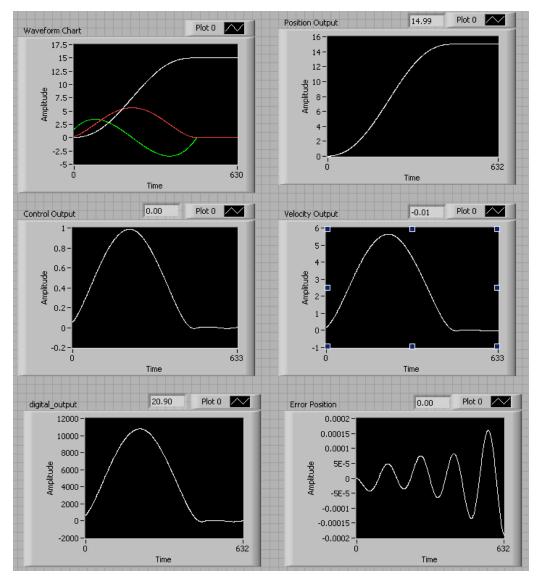
We try to force the state trajectory to slide on our surface so that: S = 0
S = 0

$$\begin{split} \dot{S} &= Kp \,\dot{\tilde{\theta}} + Ki \,\tilde{\theta} + \ddot{\tilde{\theta}} \\ &= Kp \left(\dot{\theta}_m - \dot{\theta}_d \right) + Ki \left(\theta_m - \theta_d \right) + \left(\ddot{\theta}_m - \ddot{\theta}_d \right) \\ &= Kp \left(\dot{\theta}_m - \dot{\theta}_d \right) + Ki \left(\theta_m - \theta_d \right) + \frac{T_m}{J} - \frac{B}{J} \,\dot{\theta}_m - \ddot{\theta}_d = 0 \end{split}$$

Since $T_m = K_t I_a$, then $I_{eq} = (-JKp(\dot{\theta}_m - \dot{\theta}_d) - JK_i(\theta_m - \theta_d) + B\dot{\theta}_m) / Kt$

Then the full control output:

 $I = I_{eq} + I_{switching}$, where $I_{switching} = -K * sat (s / \phi)$ and *sat* is the function:


 $sign(s) \quad if \ abs(s) > \phi$ $s / \phi \quad if \ abs(s) < \phi$

Stability

- The stability can be proven using Lyapunov function. (Left for the reader to proof ^(C))
- You may refer to:

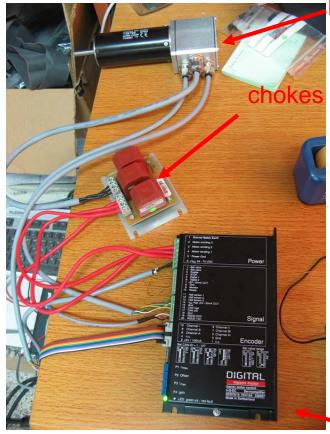
http://bono02.files.wordpress.com/2008/01 /smc.pdf

Simulation

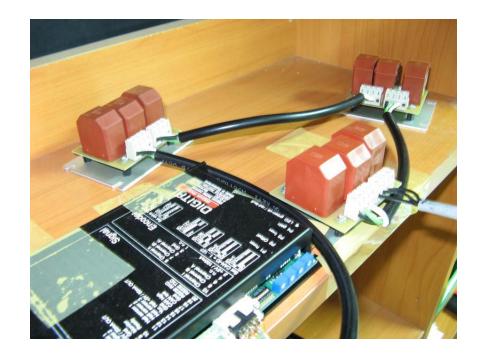
- Quintic Input
- Motor parameters:

j=0.01; b=0.1; Kt=0.01; Kb=0.29098; Ra=1; La=0.5; Controller parameters:

- Kp = 10
- Ki = 2

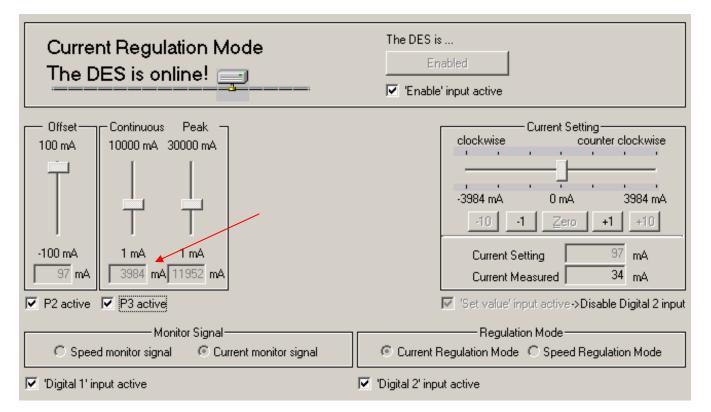

 \bullet

Delta = 0.9


Experiment

- Hardware
 - MAXON Servo amplifier DES 70/10
 - Maxon BLDC Motor EC 45
 - 3 Choke inductor (recommended inductance is 400 uH, the maxon engineer said to me :p)
 - NI Motion controller PXI-7358
- Software
 - Labview Real-Time
 - Maxon DES Program (For monitoring)

Hardware


Maxon EC 45 Motor

Driver DES 70/10

Notes

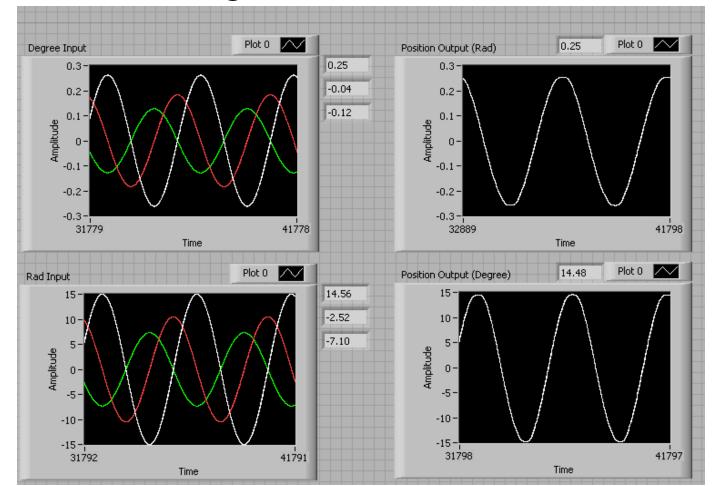
• You must read the manual of DES 70/10 and adjust the potentiometer of the driver! You may also adjust through the software provided! We are using torque mode!

Notes Cont'd

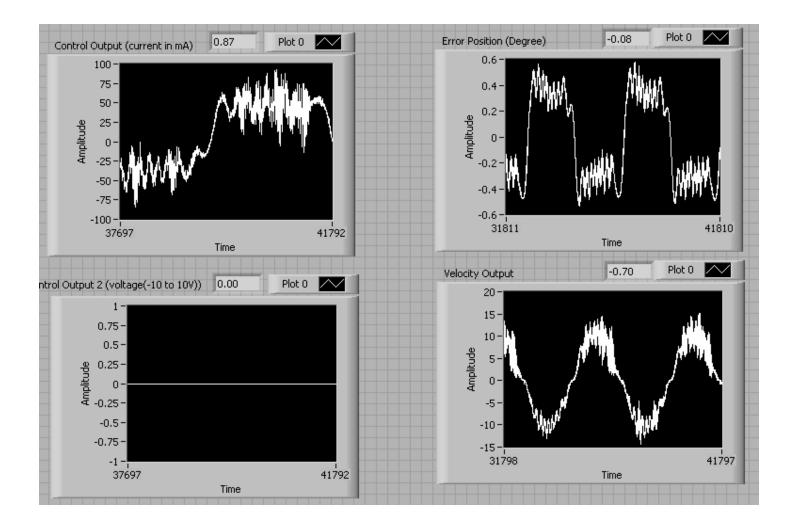
Read the motor manual, for this motor, the parameters are:

j = 0.0000209; (available in manual)

b = 0.00209; (trial and error, b=100*j)


Kt = 0.025; (available in manual)

Ra =0.143; (available in manual)


- Power supplies: Read the DES manual, I am using 60 V, 6 A max power supply.
- The video is available at http://bono02.wordpress.com/

Results

 Sinusoidal Input, Steady State error around 0.5 degree

Results

